
Penetration Test Report

Yaal Coop

V 1.0
Amsterdam, March 13th, 2025
Public

Document Properties

Client Yaal Coop

Title Penetration Test Report

Target • Canaille, a really easy-to-use OpenID Connect server, based on an LDAP directory

Version 1.0

Pentester Andrea Jegher

Authors Andrea Jegher, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 February 14th, 2025 Andrea Jegher Initial draft

0.2 February 19th, 2025 Marcus Bointon Review

1.0 March 13th, 2025 Marcus Bointon 1.0

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 6

1.6.2 Findings by Type 6

1.7 Summary of Recommendations 7

2 Methodology 8
2.1 Planning 8

2.2 Risk Classification 8

3 Reconnaissance and Fingerprinting 10

4 Findings 11
4.1 CLN-001 — Password reset link depends on HTTP request Host header 11

4.2 CLN-002 — Weak cryptographic primitive 13

4.3 CLN-004 — Insecure password reset 15

4.4 CLN-007 — Lack of content security policy 17

4.5 CLN-003 — Username enumeration 18

4.6 CLN-008 — Server-side request forgery in logo() function 20

5 Non-Findings 22
5.1 NF-009 — URL validation with regexp 22

5.2 NF-010 — Password backend storage 22

6 Future Work 24

7 Conclusion 25

Appendix 1 Testing team 26

1 Executive Summary

1.1 Introduction

Between February 10, 2025 and February 18, 2025, Radically Open Security B.V. carried out a penetration test for Yaal

Coop.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• Canaille, a really easy-to-use OpenID Connect server, based on an LDAP directory

The scoped services are broken down as follows:

• Canaille, an OpenID Connect server really easy to use, based on an LDAP directory: 6 days

• PM/Review: 1.5 days

• Total effort: 7.5 days

1.3 Project objectives

ROS will perform a penetration test of Canaille with Yaal Coop in order to assess the security of its implementation.

To do so ROS will access its public source code repository and guide Yaal Coop in attempting to find vulnerabilities,

exploiting any such found to try and gain further access and elevated privileges.

1.4 Timeline

The security audit took place between February 10, 2025 and February 18, 2025.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 1 High, 3 Moderate and 2 Low-severity issues.

The password reset link generation relies on the HTTP request Host header when _external is set to true in

Flask.url_for. Since users can manipulate the Host header, this could lead to account takeovers by directing users

to malicious password reset URLs CLN-001 (page 11).

4 Radically Open Security B.V.

https://gitlab.com/yaal/canaille/

Public

The password reset mechanism follows insecure practices, potentially allowing unauthorized password changes

or account takeovers CLN-004 (page 15). Additionally, username enumeration is possible due to different error

messages returned when an account exists or not, which can help attackers discover valid usernames CLN-003 (page

18).

A weak cryptographic primitive is used for message signing; SHA-256 with a prepended secret key is not a secure

method for authentication or integrity verification CLN-002 (page 13). This could allow attackers to forge or

manipulate messages under certain conditions.

The application is also vulnerable to server-side request forgery (SSRF) in the logo() function CLN-008 (page 20).

If SERVER_NAME is not set, the function fetches the logo from a URL based on the HTTP request, which could allow

attackers to make unauthorized requests to internal services.

Furthermore, the lack of a Content Security Policy (CSP) in the Flask web application increases the risk of cross-site

scripting (XSS) and other client-side attacks by allowing the execution of potentially harmful scripts from untrusted

sources CLN-007 (page 17).

1.6 Summary of Findings

ID Type Description Threat level

CLN-001 CWE-436:
Interpretation Conflict

When the _external flag is true the function Flask.url_for
will use the request Host header, controlled by the user, to
create the final URL. In this application it might lead to an
account takeover.

High

CLN-002 CWE-327: Use of
a Broken or Risky
Cryptographic Algorithm

The application signs messages using SHA-256,
prepending a secret key to them.

Moderate

CLN-004 CWE-640: Weak
Password Recovery
Mechanism for
Forgotten Password

The password reset mechanism design follows insecure
practices.

Moderate

CLN-007 CWE-358: Improperly
Implemented Security
Check for Standard

The Flask web application does not implement a Content
Security Policy

Moderate

CLN-003 CWE-204: Observable
Response Discrepancy

The application provides different error messages
depending on whether account exists or not.

Low

CLN-008 CWE-918: Server-
Side Request Forgery
(SSRF)

The function providing the application logo fetches it
from a URL depending on the HTTP request URL if
SERVER_NAME is not set in the configuration.

Low

Executive Summary 5

1.6.1 Findings by Threat Level

33.3%

50.0%

16.7%

High (1)

Moderate (3)

Low (2)

1.6.2 Findings by Type

16.7%

16.7%

16.7% 16.7%

16.7%

16.7%

CWE-436: Interpretation Conflict (1)

CWE-327: Use of a Broken or Risky

Cryptographic Algorithm (1)

CWE-640: Weak Password Recovery

Mechanism for Forgotten Password (1)

CWE-358: Improperly Implemented

Security Check for Standard (1)

CWE-204: Observable Response

Discrepancy (1)

CWE-918: Server-Side Request Forgery

(SSRF) (1)

6 Radically Open Security B.V.

Public

1.7 Summary of Recommendations

ID Type Recommendation

CLN-001 CWE-436:
Interpretation Conflict

• Never use the _external=True flag, and require the system admins
to set it in a configuration variable.

• Alternatively, change the reset feature so that 1) the application does
not send a link but the reset token only 2) Add a page where users can
submit reset tokens, with their usernames, that handles the reset.

CLN-002 CWE-327: Use of
a Broken or Risky
Cryptographic Algorithm

• Use HMAC with SHA-256 to sign the message.

CLN-004 CWE-640: Weak
Password Recovery
Mechanism for
Forgotten Password

• Redesign the reset flow following the OWASP implementation
guidelines.

CLN-007 CWE-358: Improperly
Implemented Security
Check for Standard

• Implement a restrictive CSP header to limit allowed sources for scripts,
styles, and other resources.

CLN-003 CWE-204: Observable
Response Discrepancy

• Adjust responses so that they are the same regardless of whether a
user exists or not.

CLN-008 CWE-918: Server-
Side Request Forgery
(SSRF)

• Read the default logo from the file system if the SERVER_NAME is not
set instead of using the request.url_root, or disable that feature
when it is not set.

Executive Summary 7

https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2021) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

8 Radically Open Security B.V.

http://www.pentest-standard.org/index.php/Reporting

Public

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

Methodology 9

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• Gitleaks – https://github.com/gitleaks/gitleaks

• CodeQL – https://codeql.github.com

• OpenGrep – https://github.com/opengrep/opengrep

• Bandit – https://bandit.readthedocs.io

10 Radically Open Security B.V.

https://github.com/gitleaks/gitleaks
https://codeql.github.com
https://github.com/opengrep/opengrep
https://bandit.readthedocs.io

Public

4 Findings

We have identified the following issues:

4.1 CLN-001 — Password reset link depends on HTTP request Host header

Vulnerability ID: CLN-001

Vulnerability type: CWE-436: Interpretation Conflict

Threat level: High

Description:

When the _external flag is true the function Flask.url_for will use the request Host header, controlled by the

user, to create the final URL. In this application it might lead to an account takeover.

Technical description:

For this issue we used the demo application at canaille/demo/docker-compose.yml hosted on a local machine.

The password reset feature at endpoint /reset, handled by code from line 86 of canaille/core/endpoints/

auth.py accepts an input form named ForgottenPasswordForm that contains a field called Login.

A legitimate user will fill the Login field with their username and the application will search that username in the back

end, find the email address associated with that username and send a reset link. This link includes the username and a

token. Note, that the only information required to perform a password reset is the username, and this value is not meant

to be private.

To send the reset password email the application uses function send_password_reset_mail on line 40 of file

canaille/core/mails.py. On line 44, the application creates the reset URL with the following code. Note that the

url_for has its _external parameter set to True.

reset_url = url_for(
 "core.auth.reset",
 user=user,
 hash=build_hash(
 user.identifier,
 mail,
 user.password if user.has_password() else "",
),
 _external=True,
)

When _external is set to True, Flask will use the HTTP request Host header for the domain of the URL. So for

example if a user modifies the Host header in the request sent to the reset URL, the user will contain the domain set

Findings 11

in the request's Host header. For example, in the following curl command we set the Host header to attacker.com

(the cookie and CSRF token values are required but tied to a non-authenticated user session, so anyone can send this

request for any username):

curl --path-as-is -i -s -k -X $'POST' \
 -H $'Host: attacker.com' \
 -H $'Content-Type: multipart/form-data; boundary=----WebKitFormBoundary4h8QAnJFRxIJFx9h' \
 -b $'canaille=COOKIE' \
 --data-binary $'------WebKitFormBoundary4h8QAnJFRxIJFx9h\x0d\x0aContent-Disposition: form-data;
 name=\"csrf_token\"\x0d\x0a\x0d\x0aCSRF_TOKEN\x0d\x0a------WebKitFormBoundary4h8QAnJFRxIJFx9h
\x0d\x0aContent-Disposition: form-data; name=\"login\"\x0d\x0a\x0d\x0aadmin\x0d\x0a------
WebKitFormBoundary4h8QAnJFRxIJFx9h--\x0d\x0a' \
 $'http://canaille.domain/reset'

That will generate an HTTP request similar to this:

POST /reset HTTP/1.1
Host: attacker.com
Content-Length: 329
Content-Type: multipart/form-data; boundary=----WebKitFormBoundary4h8QAnJFRxIJFx9h
Cookie: canaille=COOKIE

------WebKitFormBoundary4h8QAnJFRxIJFx9h
Content-Disposition: form-data; name="csrf_token"

CSRF_TOKEN
------WebKitFormBoundary4h8QAnJFRxIJFx9h
Content-Disposition: form-data; name="login"

admin
------WebKitFormBoundary4h8QAnJFRxIJFx9h--

As a consequence of the reset password request, the application mail server will send the following email. Note, that

the URL host is attacker.com, the same as the one set in our curl request, and the URL contains the password reset

token too.

Password initialization

In order to finalize your account configuration at Canaille, we need to setup your password. Please
 click on the link below and follow the instructions.

Initialize password: http://attacker.com/reset/admin/
aacf6d8ef4ed72421885ec41615259909d6da775f5e06c26e6b58f89900d1edd
Canaille: http://attacker.com/

Impact:

If a user receiving this email clicks on the link, they will visit the attacker.com website instead of the original Canaille

instance, leaking the reset token to a third party. This third party can then use the reset token to reset the user password

and take over their account.

Note that there are three mitigations:

12 Radically Open Security B.V.

Public

1. The attacker must know the username of a user

2. A user must click on the reset link in the email, which they might not

3. If there is a web server in front of the application, like Nginx, it might reject the request since the Host header

does not match any of the domains it is configured to serve

Recommendation:

• Never use the _external=True flag, and require the system admins to set it in a configuration variable. This

is a very drastic change in the design of the application but any time the application uses this flag it will use the

request Host header that an attacker could exploit.

• Alternatively, change the reset feature so that 1) the application does not send a link but the reset token only 2)

Add a page where users can submit reset tokens, with their usernames, that handles the reset. In this way even if

an attacker submits a reset for another user it is the final user that decides the domain to visit.

4.2 CLN-002 — Weak cryptographic primitive

Vulnerability ID: CLN-002

Vulnerability type: CWE-327: Use of a Broken or Risky Cryptographic Algorithm

Threat level: Moderate

Description:

The application signs messages using SHA-256, prepending a secret key to them.

Technical description:

Function build_hash at file canaille/app/__init__.py line 23 creates hash of input arguments from the app

secret key using SHA-256 algorithm.

def build_hash(*args):
 return hashlib.sha256(
 current_app.config["SECRET_KEY"].encode("utf-8")
 + obj_to_b64(str(args)).encode("utf-8")
).hexdigest()

Endpoints like /register (in canaille/core/endpoints/account.py on line 235) uses this function to verify

that an argument (data) was not altered by the user after receiving it from the server.

Findings 13

@bp.route("/register", methods=["GET", "POST"])
@bp.route("/register/<data>/<hash>", methods=["GET", "POST"])
def registration(data=None, hash=None):
...
 if hash != payload.build_hash():
 flash(
 _("The registration link that brought you here was invalid."),
 "error",
)
 return redirect(url_for("core.account.index"))

The data parameter in this function could for example come from function user_invitation in the same file at line

199, and contains a new user initial fields that the server generates and signs using the build_hash function.

Impact:

The function directly concatenates the SECRET_KEY with the hashed data before passing it to sha256, a kind of naïve

MAC calculation. This makes the hash predictable and could lead to security flaws such as hash extension attacks.

An extension attack means that an attacker who knows hash(secret + message) and message can compute

hash(secret + message + appended_message) without knowing SECRET_KEY.

While this attack is feasible, we did not find a message to append that could have an impact on the application since the

message (data in the route) must be proper JSON.

Recommendation:

Use HMAC with SHA-256 to sign the message. For example, with the following code:

 import hmac
 import hashlib

 def build_hash(*args):
 key = current_app.config["SECRET_KEY"].encode("utf-8")
 message = obj_to_b64(str(args)).encode("utf-8")
 return hmac.new(key, message, hashlib.sha256).hexdigest()

14 Radically Open Security B.V.

Public

4.3 CLN-004 — Insecure password reset

Vulnerability ID: CLN-004

Vulnerability type: CWE-640: Weak Password Recovery Mechanism for
Forgotten Password

Threat level: Moderate

Description:

The password reset mechanism design follows insecure practices.

Technical description:

The password reset mechanism is as follows.

1. A user visits the "/reset" endpoint and submits their email address

2. The application sends an email to the user, if they are registered, through function

send_password_reset_mail at file canaille/core/mails.py line 40. This function creates a reset

URL and sends the email. The following line of code generates the reset URL. Note that, build_hash uses an

application secret and is not a simple hash.

reset_url = url_for(
 "core.auth.reset",
 user=user,
 hash=build_hash(
 user.identifier,
 mail,
 user.password if user.has_password() else "",
),
 _external=True,
)

3. When the user clicks the link in the email they will visit endpoint /reset/<user:user>/<hash>. This endpoint

is handled in file canaille/core/endpoints/auth.py on line 244, and checks that the hash in the request

URL matches with the one calculated in the same way, in order to validate it. We report the relevant code, where

hash is the parameter in the request URL and the hashes is the list of hashes, in case of multiple emails, the

server uses to validate it.

hashes = {
 build_hash(
 user.identifier,
 email,

Findings 15

 user.password if user.has_password() else "",
)
 for email in user.emails
 }
 if not user or hash not in hashes:
 flash(
 _("The password reset link that brought you here was invalid."),
 "error",
)
 return redirect(url_for("core.account.index"))

On this mechanism we make the following considerations:

1. The reset token does not expire

2. The reset token value changes only after a password change or an application secret key (since the build_hash

function uses the application secret)

3. The reset is not random but tied to user content

4. The application does not invalidate any existing user sessions on a successful reset

5. There is a time window when a user is invited when the password is not set, when the reset token might be

predictable

Impact:

An attacker might take advantage of the insecure design and reset the password for a different user.

Recommendation:

Redesign the reset flow following the OWASP implementation guidelines. That are in short:

1. Ensure that generated tokens or codes are:

1. Randomly generated using a cryptographically safe algorithm

2. Sufficiently long to protect against brute-force attacks

3. Stored securely, e.g. in a database

4. Single use and expire after an appropriate period

2. Invalidate the sessions automatically after a successful reset

16 Radically Open Security B.V.

https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html

Public

4.4 CLN-007 — Lack of content security policy

Vulnerability ID: CLN-007

Vulnerability type: CWE-358: Improperly Implemented Security Check for
Standard

Threat level: Moderate

Description:

The Flask web application does not implement a Content Security Policy

Technical description:

Content Security Policy (CSP) is an HTTP header that tells the browser the sources from which a web application can

load scripts, styles, and other resources. One of its primary goals is in mitigating cross-site scripting (XSS) attacks.

To reproduce this issue run the local demo container demo/docker-compose.yml and perform a curl request like

the following. From the response it is possible to see that HTTP security headers, including CSP, are not present in the

response.

curl -I https://localhost:5000

Additionally, perform the same request to the official live demo, where it is possible to see that the only HTTP security

header missing is the CSP.

curl -I https://demo.canaille.yaal.coop/login

As other HTTP security headers are easy to add from a web server separate from the application, CSP may need to be

set from the application itself. For example, to generate a random nonce for each script.

Impact:

The application does not mitigate common web application attacks. On its own it is not a threat to the application, but

increases the risk of successful exploitation should other vulnerabilities arise.

Recommendation:

Implement a restrictive CSP header to limit allowed sources for scripts, styles, and other resources. For example, using

Talisman that integrates with Flask.

Other resources to better understand CSP are:

Findings 17

https://pypi.org/project/flask-talisman/

1. OWASP Cheat Sheet

2. Mozilla CSP Docs

3. Google CSP Validator

4.5 CLN-003 — Username enumeration

Vulnerability ID: CLN-003

Vulnerability type: CWE-204: Observable Response Discrepancy

Threat level: Low

Description:

The application provides different error messages depending on whether account exists or not.

Technical description:

User enumeration vulnerabilities occur when an attacker can distinguish between valid and invalid usernames based

on system responses. We found several endpoints where the application responds differently depending on whether a

username or email exists.

1. "/register"

This function, found in file canaille/core/endpoints/account.py on line 235, handles user registration. One

of the steps at line 339 is to validate the input form fields. Two validators, unique_email and unique_user_name,

defined in canaille/core/validators.py lines 11 and 20, validates whether the submitted username and email

are not already in the system.

def unique_user_name(form, field):
 if Backend.instance.get(models.User, user_name=field.data) and (
 not getattr(form, "user", None) or form.user.user_name != field.data
):
 raise wtforms.ValidationError(
 _("The user name '{user_name}' already exists").format(user_name=field.data)
)

def unique_email(form, field):
 if Backend.instance.get(models.User, emails=field.data) and (
 not getattr(form, "user", None) or field.data not in form.user.emails
):
 raise wtforms.ValidationError(
 _("The email '{email}' is already used").format(email=field.data)

18 Radically Open Security B.V.

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://csp-evaluator.withgoogle.com/

Public

)

When any of these validators fail they raise a validation error that is included in the HTTP response, containing a

message stating that the email or the username already exists.

2. Endpoints with <user:user> variable in path that do not require OAuth permission

canaille/core/endpoints/account.py
 867,21: @bp.route("/profile/<user:user>/<field>")
 889,19: @bp.route("/reset/<user:user>", methods=["GET", "POST"])

canaille/core/endpoints/auth.py
 159,24: @bp.route("/firstlogin/<user:user>", methods=("GET", "POST"))
 243,19: @bp.route("/reset/<user:user>/<hash>", methods=["GET", "POST"])

The application will respond to unauthenticated requests with a 404 not found response when the user does not

exist, a 403 when the user exists and the request contains a valid CSRF token and cookie, and a 400 if the CSRF token

and cookie are not present or invalid.

To reproduce this issue you could use the following curl command, first using admin and then adminx in the

username, observing two different responses (one a 400 and the second a 404).

curl --path-as-is -i -s -k -X $'POST' \
 -H $'Content-Type: application/x-www-form-urlencoded' \
 -H $'Content-Length: 12' \
 -b $'canaille=x' \
 --data-binary $'csrf_token=x' \
 $'http://canaille.domain/firstlogin/admin'

Impact:

An attacker can enumerate valid usernames and email. This can be further exploited with other vulnerabilities, to

conduct credential stuffing or social engineering attacks.

Recommendation:

The "/register" endpoint, must respond with the same message regardless of whether the user already exists, for

example more information has been sent to your email; If the user does not exist, no email will sent by

the system.

For the endpoints with <user:user> follow these examples:

1. Route /profile/<user:user>/<field> should return a default image for any user that has not it set or that

does not exist.

2. Routes /reset/<user:user> and /reset/<user:user>/<hash> should always return an unauthorized

message if the user does not exist or the request does not have the permissions to reset the password.

Findings 19

3. Route /firstlogin/<user:user> must return the same message when the user does not exist and when

their password is already set.

4.6 CLN-008 — Server-side request forgery in logo() function

Vulnerability ID: CLN-008

Vulnerability type: CWE-918: Server-Side Request Forgery (SSRF)

Threat level: Low

Description:

The function providing the application logo fetches it from a URL depending on the HTTP request URL if SERVER_NAME

is not set in the configuration.

Technical description:

Note that in order for this issue to work the SERVER_NAME configuration variable must be set. In the last version of the
code tested, the application did not work when it was not set.

Server-Side Request Forgery (SSRF) occurs when an application lets an attacker send requests from the server. In this

case, a GET HTTP request is sent without headers or cookies. The application uses the logo() function to fetch an

image included in email attachments.

For example, when a user registers, the server processes their email and sends a confirmation email with a registration

link. This email also includes the Canaille logo, which is retrieved from /static/img/canaille-head.webp.

Function logo() defined in file canaille/app/mails.py at line 14, fetches, depending on some configuration, the

application logo to be sent in emails, and it is used by the following functions:

canaille/core/mails.py
 13,41: logo_cid, logo_filename, logo_raw = logo()
 52,41: logo_cid, logo_filename, logo_raw = logo()
 93,41: logo_cid, logo_filename, logo_raw = logo()
 124,41: logo_cid, logo_filename, logo_raw = logo()
 155,41: logo_cid, logo_filename, logo_raw = logo()
 186,41: logo_cid, logo_filename, logo_raw = logo()
 219,41: logo_cid, logo_filename, logo_raw = logo()
 256,41: logo_cid, logo_filename, logo_raw = logo()

In the demo application, the final URL is assigned on line 28 of canaille/app/mail.py, and later flows into the

urllib.request.urlopen(logo_url) function that, depending on the URL's scheme, fetches the resource.

if current_app.config.get("SERVER_NAME"):
 logo_url = "{}://{}/{}".format(

20 Radically Open Security B.V.

Public

 current_app.config.get("PREFERRED_URL_SCHEME"),
 get_current_domain(),
 logo_url,
)
 else:
 logo_url = f"{request.url_root}{logo_url}"

 try:
 with urllib.request.urlopen(logo_url) as f:
 logo_raw = f.read()

Note, that the logo_url value depends on request.url_root, which is controlled by the user performing

this request. For example, it could be possible to create an HTTP request with this host header Host:

other.internal.server/resource.txt?x= to make the application fetch the resources.txt file instead of

the logo. Then this resource will be added to the email attachments and sent to the attacker.

Impact:

Depending on the environment, an attacker might be able to extract sensitive information.

Several restrictions reduce the risk of this issue. For example, Flask always prepends at least http:// to

request.url_root, preventing the use of arbitrary URL schemes like file:// to access the file system.

As a result, the SSRF target must be an HTTP server, such as the AWS metadata endpoint if the application is hosted

on an EC2 instance. However, since no headers can be set, only very old EC2 instances using the first version of the

metadata endpoint would be vulnerable.

The only viable target would be another internal server exposing sensitive information without authentication. Even in

this case, the attacker would need to know the exact path to access any sensitive data.

Recommendation:

• Read the default logo from the file system if the SERVER_NAME is not set instead of using the

request.url_root, or disable that feature when it is not set.

Findings 21

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-009 — URL validation with regexp

Using regular expressions for URL validation can introduce security risks such as overly permissive patterns, bypassing,

denial of service (DoS) attacks, and inconsistent validation.

For example, the regexp from function validate_uri in file canaille/app/__init__.py at line 54, validates

URLs submitted by a user.

def validate_uri(value):
 regex = re.compile(
 r"^(?:[A-Z0-9\\.-]+)s?://" # scheme + ://
 r"(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|" #
 domain...
 r"[A-Z0-9\\.-]+|" # hostname...
 r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})" # ...or ip
 r"(?::\d+)?" # optional port
 r"(?:/?|[/?]\S+)$",
 re.IGNORECASE,
)
 return re.match(regex, value) is not None

This pattern does not properly validate the scheme (e.g., HTTP, HTTPS), allowing potentially harmful URLs like

data:// or file://. Since the application does not use this information, other than for displaying in the UI, an

attacker cannot exploit this lack of validation, especially because the scheme must contain ://, preventing a URL like

javascript:alert() from being valid.

A safer approach is to use the Python urllib.parse module, which provides robust URL parsing and validation, as in

the following example snippet. This could also allow for more restrictive filtering, like removing query parameters:

from urllib.parse import urlparse

def is_valid_url(url):
 parsed = urlparse(url)
 return parsed.scheme in ['http', 'https'] and bool(parsed.netloc)

5.2 NF-010 — Password backend storage

The application uses three different back ends for data storage: SQL, LDAP, and in-memory. Each backend has its own

password storage method.

22 Radically Open Security B.V.

Public

1. SQL Backend
The SQL backend uses the sqlite hashing mechanism combined with PBKDF2 (Password-Based Key Derivation

Function 2). PBKDF2 is a strong hashing algorithm that enhances security by making brute-force attacks more difficult

through its iterative nature.

2. In-Memory Backend
Currently, the in-memory back end stores passwords in plaintext. This is a significant security risk as anyone with access

to the running application server can retrieve these passwords. Consider transitioning to PBKDF2, as used in the SQL

back end, to hash passwords before storing them in memory.

3. LDAP Backend
In the current setup, the demo users' passwords are stored in plaintext. However, for new users, the password is hashed

using salted SHA-1, showing that the LDAP server will hash the password when asked to save a new user.

Even if the demo apps may represent an example for the final user and are not indented for production, it is important

to document this behavior of the system and if possible implement policies or mitigation to ensure that the system only

store users' password hash using secure algorithms like bcrypt, PBKDF2, or Argon2.

Non-Findings 23

6 Future Work

• Production-ready setup

The project does not include a production-ready setup. It would be beneficial to add one, at least for one backend

(e.g., SQL), to provide users with an example that follows security best practices.

This way, a future penetration test could also review the production architecture, offering additional suggestions for

deploying the application securely.

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is a process that must be continuously evaluated and improved; this penetration test is just a single

snapshot. Regular audits and ongoing improvements are essential in order to maintain control of your corporate

information security.

24 Radically Open Security B.V.

Public

7 Conclusion

We discovered 1 High, 3 Moderate and 2 Low-severity issues during this penetration test.

The most pressing issue pertains to the potential for account takeovers through manipulated password reset links, which

rely on insecure practices within Flask.url_for. This flaw is exacerbated by weak cryptographic measures (SHA-256

with a prepended key) and username enumeration vulnerabilities, both heightening the risk of unauthorized access.

The remaining concerns including the method of fetching application logos and varying error message handling, which

might, under certain configurations, lead to sensitive information disclosure. While not immediately catastrophic, these

vulnerabilities still represent potential exposure points that could be leveraged in combination with more severe flaws.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 25

Appendix 1 Testing team

Andrea Jegher
(pentester)

Andrea is a security engineer with experience in offensive security and secure
development. He started his career focusing on Web Application as a developer and as
a penetration tester. Later he studied other fields of security such as cloud, networks
and desktop applications.

Melanie Rieback
(approver)

Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

26 Radically Open Security B.V.

